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SUMMARY 

The theory of radioimmunoassay (RIA) has been expanded to consider, describe, and predict 
quantitatively the effect of the separation of bound from free fractions on the nature of the dose 
response curves, under a variety of conditions. The necessary differential equations and 
programs for computer simulation have been developed, tested, applied and illustrated. 

These theoretical models may explain several anomalous results obtained in many assay 
systems, and can predict the effect of the separation procedure on the observed apparent 
affinity constant and binding capacity values obtained from Scatchard plots and related tech- 
niques. 

INTRODUCTION 

THE DEVELOPMENT of the mathematical theory of radioimmunoassays (RIA) and 
other forms of radioligand assays (RLA) by Berson and Yalow [ l-51, Ekins ef al. 
[6-91 and others [ IO-291 has provided a basis for experimental design, optimiza- 
tion of assay conditicms, quantitative interpretation of results, and improved 
methods for data processing. However, the theory as originally presented was 
restricted by several assumptions, thereby limiting its general applicability. By 
successively examining the effect of each of the assumptions, we obtain an 
improved description of real RIA systems, and an explanation for some previously 
observed anomalous or undesirable effects. 

We have previously developed the theory of RIA beyond the original models 
in four respects: (1) development of models for prediction of the magnitude and 
nature of the variance (scatter) of the response variable around the dose-response 
curve [ 18,261; (2) development of computer technics to describe the equilibrium 
behavior of complex, heterogeneous, crossreactive systems involving any 
number (n) of antigens and any number (m) of antibodies [22,23,25]; (3) develop- 
ment of computer programs for estimation of parameters for such ‘n x m’ binding 
systems[241; (4) description and computer simulation of the kinetic (non-equi- 
librium) behavior of RIA systems prior to attainment of equilibrium under a 
variety of boundary conditions [20]. 

In each of the foregoing theoretical developments, it was assumed that the 
separation of ‘bound’ from ‘free’ antigen (or Iigand) could be accomplished without 
perturbing the previously established distribution or partition of these two species. 
Although a plethora of methods has been developed for separation of bound 
from free (e.g., chromatoelectrophoresis, ‘second (or double) antibody’, gel 
filtration, gel electrophoresis, sedimentation, isoelectric focusing, adsorption 
with charcoal or fluorosil, equilibrium dialysis, immuno-adsorbents, and ‘solid- 
phase’ methods) it is likely that each of these methods disturbs the previously 
established distribution of bound and free. This report is an attempt to describe 
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the effect of the separation process, at least under some idealized, simplified 
conditions. 

MATHEMATICAL MODELS 

I. For simplicity, we shall first consider the case of a homogeneous, univalent 
antigen which reacts to equilibrium according to the first order mass action law 
with a homogeneous, univalent antibody (or other binding protein). We further 
assume that the ‘tracer’ of labeled antigen (ligand) has the same binding aflinity 
as the unlabeled antigen (ligand). Later we shall consider more complex cases. 
This enables us to predict the nature of the equilibrium dose-response curves in 
the absence of any perturbation in the process of separation of bound and free, 
using an equation developed independently by Berson and Yalow[3] and by 
Ekins [9] (cf. equations (l-4)). An explicit statement of the assumptions underlying 
this model is given elsewhere [20,25,26,29]. 

These assumptions and equations make it possible to calculate the concentra- 
tions of each of the species, [PQ], [PI and [Ql. These concentrations provide 
the ‘initial conditions’ or ‘boundary conditions’ for the differential equations 
describing the separation process. 

Case A. ‘Instantaneous’ elimination offree ligand 

In certain methods of separation, most notably the ‘solid phase’ methods, it is 
possible to reduce the concentration of free antigen to (nearly) zero, almost 
instantaneously, by the simple expedient of decanting and washing the test 
tube[30]. 

Certain other methods, e.g. chromatoelectrophoresis, gel filtration, gel 
electrophoresis, isoelectric focusing, also reduce the ‘ambient’ free ligand con- 
centration to (near) zero, but require a longer time for completion of separation. 
Usually these methods measure only the bound form, but chromatoelectro- 
phoresis and gel filtration can be used to measure either or both bound and free 
forms. Under these conditions, the amount in the bound form at any moment 
during the separation process is given by equations (5) and (6), where t represents 
the duration of the separation process, [PQ], represents the measured ‘bound’ 
form, and [PQ],, represents the initial concentration at t = 0, e.g., the equilibrium 
concentration of the bound form, calculated from equations (l-4). As the duration 
of the separation process increases, the slope of the dose-response curve (of 
B/T or R vs. X) decreases. This decreases the sensitivity of the assay, if the 
residual variance around the standard curve remains constant. While the experi- 
mental errors may reasonably be assumed to remain constant, as the duration of 
the ‘washing’ procedure increases, the coefficient of variation attributable to 
‘counting error’ increases, especially in the low dose region of the curve. Accord- 
ingly, the performance of the assay is affected deleteriously as (k’r) increases. 

It is often possible to reduce the value of k’ and thus (k’r) by operating at a 
reduced temperature, since dissociation rate constants generally obey the 
Arrhenius equation (equation 7)[3 I]. This relationship has been shown to be 
applicable to the dissociation rate constant for testosterone (and its analogs) and 
for estradiol binding to testosterone-estradiol binding globulin (TeBG or SBG) 
[321, and to the binding of thyroxine to thyroxine binding globulin (TBG), over 
the temperature range of interest (O”-37°C). I-Iowever, this advantage of operat- 
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ing at low temperature may be partially (or completely) overruled and offset by 
an increase in the time necessary to achieve separation of bound and free. 

This is particularly true for the electrophoretic-based methods. Electrophoretic 
mobility is reduced by approximately a factor of 2 as temperature is reduced from 
25 to O’C, primarily as a result of an approximate two-fold increase in the viscosity 
of the buffer medium[33]. Accordingly, one must minimize the term, (k’t), 
rather than k’ or t alone. Dissociation of the ‘bound’ antigen antibody com- 
plex would result in a spuriously low estimate of K, calculated from a Scatchard 
ptot [34], while the q value remains essentially unchanged. This is a potentially 
important source of error in the experimental determination of K values using 
RIA methods, and is qualitatively similar to the decrease in apparent or cal- 
culated affinity, when the first antigen-antibody reaction fails to come to equi- 
librium 120). 

These considerations may also be applied to radioimmunoassay systems which 
do not satisfy the assumptions underlying equation (l), i.e. non-equilibrium and 
‘heterogeneous’ antibody cases. To apply this to ‘non-equilib~um’ cases, one 
merely uses the value of [PQfo obtained as a solution to the differential equations 
describing the system[27,28] in equations (5) and (6). When there are two or more 
orders of antibody sites, one obtains equation (8). 

Case 3. ;4dsorption methods’ 

We shall now return to the homogeneous antigen-homogeneous antibody case, 
with boundary conditions specified by equation (1). Most methods for separa- 
tion of ‘bound’ and ‘free’ antigen cannot be described by the simple ~sumption 
that the free l&and is instantaneously and completely removed. In these methods, 
typified by the charcoal, flucrosil, silica, talc, or immuno-adsorbent methods, a 
quantity of material (here designated c) is introduced into the reaction system, 
allowed to react during a ‘second incubation’ of finite duration, physicdlly 
removed from the system (e.g., by centrifugation) and then either (or both) the 
bound and free forms are counted. This situation may be described by the reac- 
tion scheme given as equation (9), and the differential equations (10) subject to 
initial conditions (11). 

The ‘response’ variable is usually either [PC], i.e. counts adsorbed to charcoal, 
which are generally regarded as representing the ligand which was initially free, 
or alternatively, y = p- [PC] = [P] + [PQ], i.e. counts which remain in the 
soluble phase and presumably represent ligand which was initially present in the 
bound form. The parameter R in the equations (11) giving the initial conditions is 
obtained from equations (1) and (2). 

In contrast to Case A, which was essentially a ‘one parameter’ problem, i.e. 
the system could be characterized by one factor, (k’r), the situation described by 
Case B is vastly more complex; it involves essentially six parameters ( kl, 4, k,, k;, 
t and c) in addition to p and q which were already given. We shall now examine a 
few special, reduced cases of this general description of the separation process for 
which analytical solutions are available. This will be followed by a discussion of 
the general case, which can be solved by numerical methods. 

Case B 1. Secondary reaction irreversible, obeying first-order kinetics; no 
~eriurbatio~ of primal reaction. L&t us assume that the concentration of c is 
very large relative to the concentration of ligand: c % p. Let us further assume 
that the rate constant k2 is very large compared to k;; i.e. k2 B k$ These two 
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assumptions insure that the formation of [PC] and disappearance of [PI will 
occur very rapidly, so that dissociation of [PC] into [PI and [C] can be ignored. 
If we further assume that this second reaction (equation 9) is very rapid com- 
pared to the dissociation of [PQ], i.e. k2 9 k;, then equation (10) reduces to 
equation ( 12). 

The quantity of [PC] measured after any given duration of the ‘second in- 
cubation’ is referred to as the ‘measured Free’, and is given by eqaation (13). 
Customarily, all forms other than [PC] are ‘counted’ and designated as ‘Bound’ 
(equation (14)). This will include [PQ] and any remaining [PI. This makes it 
possible to calculate the apparent bound-to-total ratio for ligand (equation ( 15)). 
Thus, the apparent or measured B/T ratio is equal to the ‘true’ value. [PQlolp. 
existing prior to the separation step plus a negative exponential term involving 
the ‘true’ Free/Total ratio. 

This is very closely analogous to Case A; once again we are dealing with 
essentially a single parameter, (k3t). (Of course, k, ‘contains’ c and all of the 
assumptions made above.) 

As the parameter (k3t) becomes very large, the dose response curve ap- 
proaches the ‘true’ equilibrium values. Conversely, as (k3f) decreases. the curve 
of B/T (or B/F) vs. dose shifts ‘upwards’. This can be translated into ‘apparent 
Scatchard plots’[20,34]. Under these circumstances, the calculated value for K 
(based on the slope of B/F vs. B) may be spuriously high. 

Comment: Depending on the type of separation process used, one can obtain 
either spuriously high or spuriously low biased estimates of K from a Scatchard 
plot. This indicates the importance of using more than one method for the experi- 
mental determination of K, or, alternatively, showing that the duration (and other 
parameters) of the ‘second incubation’ have no effect on the dose-response curve 
obtained (although several other assumptions, given above, must also be verified). 

Case B2. Secondary reaction irreversible, obeying second-order kinetics; no 
perturbation of primary reacfion. We shall now ‘generalize’ this example some- 
what further by dropping the assumption that c % p. Thus, we must deal with 
‘second order kinetics’. If we retain the assumption that k, >> ki, then we can 
still ignore dissociation of [PC] during the separation step, and if we make the 
assumption that k, %= ki + ki, i.e., ignore the dissociation of [PQ], then we only 
need to consider the ‘irreversible’ reaction, equation (16). This is described by 
the differential equation ( 17). The solution to this differential equation is equation 
(18)Wl. 

Case B3. Secondary reaction reversible, obeying second-order kinetics: no 
perturbation of the first reaction. We shall now drop the assumption that kz 9 k,:. 
but instead assume that k, * k, , ki s k,!. In this example, we are assuming that 
the antigen P first comes to equilibrium with antigen [Q]; then the remaining free 
antigen [P] rapidly comes into equilibrium with an adsorbent, C, without affecting 
the equilibrium of the first reaction, i.e. before dissociation of [PQ] can take 
place. This situation may occur in several instances in practice. especially when 
the nature of the second reaction is quite different from that of the first reaction. 

An exact analytical solution is available for the description of the kinetic 
behavior of this system[27,28]. The kinetic behavior of this system can also be 
obtained using either analog or digital computer methods[20]. We may also 
examine this case at equilibrium, using equation (1) above. making the substitu- 
tions indicated by equation (19). The apparent ‘free’ antigen concentration is 



Mathematical theory of radioligand assays 259 

given by equation (20). The apparent ‘bound’ concentration measured in such 
a system is given by equation (2 1). Note: We are using the solution to a quadratic 
equation (1) to obtain the coefficients for a second quadratic equation which is of 
the same form as equation ( I). 

The kinetic behavior of this system is similar to that for cases Bl and B2. 
However, cases Bl and B2 predict that, as time increases indefinitely, [PC],,, 
approaches the ‘true’ value, [PI0 (equation 22). However, by simultaneous 
consideration of the back reaction of the secondary reaction (equation IO), we 
obtain equation (23), for Case B3 at final equilib~um. 

Case 34. The ‘general’ case. We can examine another of our assumptions, 
i.e., that k, s k,, k; in, k,!. Now, we recognize, that before the ‘second reaction’ 
can come to equilibrium. the first reaction will be perturbed (i.e., some [PQ] will 
dissociate to [PI and [Q]). Thus, we are dealing with a one-ligand, two-binding- 
site reaction. The kinetics of this general case can be described by digital com- 
puter methods for numerical integration of equations (10) above, or by analog 
computer methods. 

A representative example might involve the following parameters: 

K, =5 10’0. k =1; I()‘(‘- k’ =r: 1 

* = 4/r& ; = 3/K: 
1 

L = 106; k, = 105; k; = O-1 
c = 10-S 
p=p*+x* 

The K, value is approximately of the same order of magnitude as for ‘nonspecific’ 
binding of many ligands to ‘nonspecific’ proteins, such as albumin. 

The behavior of this system is illustrated in Figs. l-4, showing the effect of 
changes in the duration of the secondary ‘reaction on the dose-response curve 
(Fig. I), on the apparent Scatchard plot (Fig. 2), on the fraction of ligand in the 
supematant (Fig. 3), and the effect of massive changes in the concentration of 
adsorbent (Fig. 4). 

The equilibrium behavior of this I-ligand, 2-binding protein system may also 
be obtained by use of equations (lo), letting time (r) increase until no further 
change is observed. However, a much more efficient and direct approach is 
to use a computer program developed for analysis of the equilibrium case [lo, 
22-241. 

Case B5. Adsu~~e~? identical with ligand. Another special case of Model IB 
deserves special attention. This occurs when the binding material of the secondary 
reaction behaves identically (both kinetically and at equilibrium) as the binding 
protein in the primary reaction, i.e. k, = k,, k; = k;. This can be achieved experi- 
mentally most easily if C is chemically identical with Q, but physically distinct 
and therefore separable. For example, C may represent the same antibody as Q, 
except that it is covalently bound to agarose or dextran gels, or some other solid 
phase support. This situation arises in affinity chromato~phy, and is almost 
identical to that obtained in immunoradiometric assays [27]. 

As in case B4, but in contrast to cases B 1, B2 or B3, we can no longer assume 
that the second reaction will not perturb the first reaction. An exact analytical 
solution to the equations (10) is available in this casef27,28]. These equations 
make it possible to predict the combination oft, p*, q and c for optimal precision 
and sensitivitv 1271. 
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Dose x I/K, 

Fig. 1. Computer simulation of radioimmunoassay using charcoal to separate bound and 
free forms of ligand. Model IB4. general case: 

k = 10’0 &’ = 1 K = J@o 

k: = loJ.‘k;= 0.1,1;, = 106 

p* = 4/K,. q = 3/K, 
c = IO/KS. 

Abscissa: Dose of unlabeled ligand, scaled according to 1/K,. 
Ordinate: ‘Apparent B/T’, i.e. the bound-to-total ratio for labeled hgand, calculated 

assuming that radioactivity in the supematant represents the antibody-bound form. 
The ‘ideal’ curve assumes that the first reaction reaches equilibrium, and that there 

is perfect, instantaneous separation of bound and free forms. Curves are also shown for 
time, r = 0.5, 1,2,5,10. The time scale is defined by setting ki = I. 

One further assumption- that the secondary reaction also reaches equilibrium, 
will further vastly (over-)simplify this problem. Once again, we can apply equa- 
tion (l), only using (Q + c) in lieu of q, to obtain the bound to free ratio (Z?) for the 
ligand P. This, together with equations (24) makes it possible to calculate the 
response variable; the apparent ‘B/T’ ratio, from equation (25). 

II. Antibody heterogeneity 

Unfortunately, the example selected as Model 1 above, (homogeneous 
antigen, homogeneous antibody) is rarely obtained in practice. Thus, in most of 
the steroid-binding assays developed to date, the ‘specific’ binding protein (4,) 
is contaminated by a much larger quantity of low affinity protein(s), q2, q3, . . . , qn, 
e.g. albumin. Thus, we are dealing with a reaction scheme as shown in equa- 
tion (26). 
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Fig. 2. Apparent Scatchard plot obtained, utiliing the same model and parameters as 
shown in Fig. I. The second reaction (charcoal adsorption) is incompkte and perturbs 
the tirst reaction. This results in a non-linear Scatchard plot, suggestive of more than 
one order of binding site. Also, the effective affinity constant is markedly reduced, and 
the apparent binding capacity is markedly increased. Temporal stability (e.g. for I = 5, 

l 10) does not necessarily validate the X and q values obtained. 

Case A. For methods which provide instantaneous removal of free l&and, the 
system containing heterogeneous antibody is described by equation (8), as noted 
above. 

The presence of multiple ‘orders’ of antibodies will result in a slightly different 
pattern but will usually not change the important qualitative and semi-quantitative 
implications of the results for the single-antigen, single-antibody case. 

Case B . The ‘equilibrium’ case can &e solved by use of equations for 1 antigen 
--n antibodies (cf. equation (20) of[9J, and [ 10,22,23]). 

The kinetic description of this system proceeds along lines similar to the 
above. If we permit the primary reaction to go to equilibrium, we obtain ‘boundary 
conditions for the secondary reaction, [PI,, lPQ,I,, IQr lo[23]. These are used in 
conjunction with the differential equations (27), and solved by numerical integra- 
tion. (Note: the adsorbent c may be treated as q,,+l .) 

I II. Ligand heterogeneity 
The above models all share one common (and vulnerable) assumption, i.e., 

that the labeled and unlabeled ligands are indistinguishable from the standpoint 
of all K, k and k’ values. In reality, the labeled and unlabeled ligand may have 
markedly diierent kinetic properties. Thus, calculation of the concentrations at 
the end of the primary reaction involves the equations for 2 antigens X 1 antibody 
(equation (3 1) of [9]), two antigens x M antibodies, or in general, n ligands x M anti- 
bodies at equilibtium[23]. The formulation of the secondary reaction proceeds 
exactly as given above for the relatively simple case, and can be solved by 
numerical integration using standard methods. 
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b p=o 

P’P. 

p=lOp. 

. 

Time, I 

Fig. 3. Time curves for ‘apparent B/T' for p = 0, p = p*. and p = lop* (all for q = 3/K,) 
and for p = 0, q = 0 (labeled ligand and charcoal only). Other conditions of model as in 
Fig. 1. In the absence of specifk antibody (q). 'E/T' falls rapidly, and reaches a plateau 
(equilibrium) value which depends on K+. Even in the presence of antibody, a ‘plateau’ 
is observed. (Note: .This plateau is eliminated if either K, or c is increased by a factor of 
10, or if 4 is zero (second reaction irreversible), and the other parameters remain 

IV. Double antibody methods 

None of the foregoing models seems applicable to the ‘double-antibody’ 
methods for separation of bound and free forms of ligand. The exact nature of the 
secondary reaction in this case remains obscure. Borth has studied the kinetics 
of the ‘double antibody’ radioimmunoassays[36], and concludes that there is only 
minimal perturbation of the first reaction by the second antibody, especially if 
the first reaction has reached equilibrium. Accordingly, as the simplest possible 
model for this separation process, we have the reaction scheme given by equation 
(29), the differential equation (30) and the expression for the observed B/T as a 
function of time given by equation (32). This simply states that the second reac- 
tion does not perturb the first and is ‘pseudo-’ first order (e.g. the concentration 
of second antibody is massively greater than the concentration of first antibody, 
(4). Alternatively, one may regard this as an irreversible second order reaction, 
obeying equations ( 16)-( 18), making appropriate substitutions. Again, a reversible 
second order reaction may be envisaged, which can be described analytically 
[27,28]. However, it is likely that the simple, irreversible, first order reaction 
would provide an adequate description of the double antibody methods for most 
purposes. Note: if the second antibody is added to the primary antibody before 
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Fig. 4. Effect of quantity of charcoal on the shape and position of the dose-response 
curve, with all other parameters held constant. As the amount of charcoal adsorbent 
increases, the optimal duration of the 2nd reaction (&,.J decrea~s. As c becomes 
‘infinite’, this t- approaches zero. In this example, fcaction time is, however, held 

constant. 

addition of ligand (i.e. pre-precipitated antibody)[40], then one is effectively 
dealing with a ‘solid-phase’ method, and model 1 A may apply. 

EXPERIMENTAL 

The above theoretical models were evaluated in a preliminary manner by 
comparison with the behavior of three radioligand assays for 17/3-estradiol: 

(a) a competitive protein binding assay (CPBA), employing pregnancy plasma 
(fractionated on Sephadex G-200 to partially purify testosterone-estradiol binding 
globulin, TeBG) and using charcoal for separation of bound and free forms of 
steroid; 

(b) a radioimmunoassay, using antisera to estradiol-3- or estradiol-17-bovine 
serum albumin, using charcoal for separation of bound and free; 

(c) a ‘solid-phase’ radioimmunoassay employing antibody-coated tubes or 
antibody-coated plastic scintillation counting vials. 

In addition, the reaction of tritiated estradiol with charcoal was studied 
directly, in the absence of binding protein or antiserum, under both equilibrium 
and non-equilibrium conditions. 

Tritiated estradiol, with a specific activity of 40 Cilmmol, was used. Details 
of the methods have been given elsewhere[30,41]. In general, the charcoal was 
removed by centrifugation for 15 min at 4°C. Reaction volume was 1.0 ml in 
most experiments. 
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RESULTS 

Results are shown in Figs. 5-10. 
Scatchard plot analysis of the data from the CPBA employing TeBG indicated 

an apparent affinity constant of 5 x lo* L/M, and the presence of a large amount of 
protein (presumably albumin) with markedly lower binding affinity. Scatchard 
analysis of several RIA dose response curves (employing specific antisera) 
indicated an apparent affinity constant of lOlo L/M, and the presence of only one 
‘order’ of binding sites in appreciable quantity. A Scatchard plot analysis for the 
binding of [3H]-estradiol with charcoal in the absence of binding protein (using 
100 pg of charcoal and massive amounts of estradiol), suggested that the steroid- 
charcoal reaction was reversible, that the charcoal was ‘saturable’, with an 
apparent affinity constant of approximately lo4 L/M, with a binding capacity of 
approximately 10s2 M/L. 

The effect of the duration of the secondary reaction (with charcoal) on the 
shape of the dose-response curve in the CPBA system is shown in Fig. 5. Note 
that both. curves have been ‘normalized’ so that the initial B/T, or (BIT),, is 
taken as 100 per cent. Compare with Fig. 1. 

The rapid uptake of free steroid by charcoal, and the subsequent slow dissocia- 
tion of estradiol-TeBG complex is shown in Fig. 6. This result is qualitatively 
similar to that seen in Fig. 3, although the parameters of Fig. 3 do not apply here. 

Fig. 5. Standard curves for a radioligand assay for estradiol utilizing pregnancy plasma 
(diluted 1: 20) as the source of TeBG, over the range O-25-5.0 ng. Labeled and un- 
labeled steroid and binding protein were added simultaneously, and the system equi- 
liberated at 2°C for 2 h, at which point (I = 0), 100 pg of dextran-coated charcoal was 
added. The assay tubes were kept at 4°C for 5 or 90 min before centiugation (4”C, 
I5 min) and determination of the ‘bound’ counts in the supematant. The ordinate 
shows counts bound, relative to the counts bound in the absence of unlabeled ligand 

(i.e. the curves have been normalized so that the initial (B/T), is regarded as 100%). 
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Fig. 6. Dissociation of tritiated estradiol from pregnancy plasma (TeBG) in the presence 
of 100 pg charcoal for lo- 12 min (0°C). 

Figure 7 shows that the choice of method for separation of bound and free 
has a detectable effect on the position and shape of the dose response curve. Both 
of these assays utilize the same reagents (although the antibody concentration 
may not be exactly comparable). The effect of charcoal concentration and tem- 
perature on the kinetics of binding of [3H]-estradiol to charcoal, in the presence 
and absence of specific antiserum, is shown in Figs. 8 and 9. This type of data, 
in conjunction with the studies at equilibrium (Scatchard plots, equilibrium 
constants of association, and binding capacities for both antiserum and charcoal) 
should make it possible to estimate k, , k; , k,, k6. (A parameter-fitting program for 
this purpose is now under development.) 

The dissociation rate constant for the steroid-antibody complex (ki) can be 
conveniently estimated by use of the solid-phase method (Fig. 10). By decanting 
the test tube, and repeated washing, one can reduce the ambient concentration 
of ‘free’ steroid to virtually zero. For a single order of antibody sites, one would 
expect a linear relationship between log (B/T) and time (or number of washes). 
The observed non-linearity may represent the presence of two or more orders of 
antibodies, or may be due to incomplete removal of initially free steroid. 

The comparison of these real radioimmunoassay systems with the theoretical 
models is beset with two difficulties: (a) the separation of charcoal from the 
remainder of the reaction mixture requires a finite duration (about !5 min to 
obtain a tightly packed precipitate with centrifugation at 2000g). This intro- 
duces some uncertainty into the effective duration of the second reaction, espec- 
ially for short reaction times (1 min- 1 h); (b) when using amounts of charcoal 
sufficient to give a satisfactory precipitate (e.g. 500 pg). it is commonly observed 
that the charcoal suspension settles after standing for about 15 min. This reduces 
the surface area available for reaction with steroid, and indicates that the system 
is not ‘well mixed’. an implicit assumption of the models. Accordingly, this has 
the effect of (partially) terminating the secondary reaction, and may invalidate 
some of the findings at long time periods. Although this problem could be over- 
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Fig. 7. Standard curves for two radioimmunoassays for estradiol, one using antibody- 
coated counting vials, and another in solution with separation by charcoal, over the 

range lo-300 pg. Means and standard deviations are shown. 

-*------.______* 

249: 
c --__ 
5 -o-,_ --_* 

Anti-estradiot serum 1:500,000 

20 40 60 80 100 

t,.tinute$ after addition Of charcoal 

Fig. 8. Radioimmunoassay system for estradiol: 100 pg of steroid was equilibrated with 
antiserum (1: SOCKlOO) at 4°C for 24 h. Then charcoal was added in amount shown, and 

the tubes were incubated at either 0°C or 24°C for the time indicated (cf. Ref. [431). 
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Fig. 9. Effect of temperature and charcoal concentration on tbe uptake of Witiakd 
estradiol by charcoal in the presence (above) or absence (below) of anti-dradiol 

serum (1: NOOOO). 

O-I 1 1 I I I I 
I 2 3 4 5 6 

Wosh no. 

Fig. 10. Dissociation of the tritiated estradiol fkom antibody (using solid-phase method 
with antibody-coated tubes). After equilibration with steroid, the tube was decanted 
(‘wash O’), and then successively washed with cold pbosphat+bufTered saline (PBS) for 

intervals of 5 min. 
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come by continuous or sequential shaking of the tubes, this is not standard 
practice for most radioimmunoassays, and was not done in the present studies. 
These two effects preclude any definitive ‘acceptance’ or ‘rejection’ of the 
theoretical models, and seriously interfere with parameter fitting. 

DISCUSSION 

The foregoing theoretical models represent an extension of previously 
developed theory describing RIAs. This treatment shows how the secondary 
reaction can perturb the results of the primary reaction. 

This has several direct consequences: (1) It provides a classification frame- 
work, by which various methods for separation of bound and free can be grouped 
and compared. (2) It should assist in the decision between alternative methods for 
separation of bound and free fractions. (3) It may assist in the development of 
new methods for separation of bound and free. (4) It can predict when the second 
reaction will have no detectable effect, such that ‘ideal’ results will be obtained. 
(5) It should permit optimization of the several parameters of the second reaction, 
(e.g. c, t) when necessary parameters can be estimated (e.g. k, k’), and indicates 
the importance of experimental evaluation of these parameters. (6) It should 
emphasize the difficulties in obtaining valid estimates of affinity constants and 
binding capacities from experimental results, and indicates the kind of controls 
and safeguards to be employed to validate results. (7) It makes another step in 
the development of a general theory which can both predict and describe quanti- 
tatively the behavior of real radioligand assay systems. 

We have omitted discussion of the problem of ‘cooperativity’ and allosteric 
effects. These have been considered in detail by Fletcher et af.[37-391. All of 
the above models are ‘deterministic’ rather than stochastic in approach, dealing 
with systematic rather than random errors in the separation of bound and free 
forms of ligand. We have previously used a stochastic model to evaluate the 
contribution of random errors in the separation of bound and free to the scatter 
around RIA dose-response curves11 8,2 1,261. Recentiy, Wilson et al. have 
reported another model to describe the effect of the separation process on the 
shape of the dose-response curve [421. 

The results of the experimental studies reported here are qualitatively com- 
patible with the theoretical models, although more refined studies are necessary. 
Baulieu et al. have previously reported similar studies of the kinetics of RIAs and 
outlined methods for estimation of rate constants [43]. 

This is not intended as an exhaustive or encyclopaedic classification scheme. 
Attention is given to those simple models for which solutions are available. Since 
any physical or chemical method can be used for ‘RIA’ systems, a complete or 
universal treatment is not possible. 

NOMENCLATURE 

P total concentration of antigen 

P* concentration of labeled antigen or ligand 

4r total concentration of antibody, species j 
c total concentration of charcoal (or other adsorbent) 

R” 
total concentration of second antibody 
bound-to-free ratio = B/F 

K equilibrium affinity constant 



Mathematical theory of radioligand assays 269 

Kl 
k 

iPi; 
[PI 
[Ql 

[PC1 
[Cl 
ISI 

1Q.W 
[PQ . Sl 

e 
0 

Ii 

E 
R 
T 

: 

B/:: 

k,/ki; K, = k,/ki; etc. 
rate constant for association 
rate constant for dissociation 
concentration of antigen-antibody complex 
concentration of free antigen 
concentration of free antibody 
concentration of ligand bound to adsorbent 
concentration of charcoal or other adsorbent 
concentration of free second antibody 
concentration of Q coupled to second antibody 
concentration of PQ coupled to second antibody 
subscript, denoting equilibrium 
subscript, denoting ‘initial conditions’ 
subscript, indicating ‘measured’ quantity 
frequency factor 
energy of activation 
universal gas constant 
absolute temperature 
time (duration of secondary reaction) 
dose (concentration) of unlabeled ligand 
dose response variable, e.g. 1 PI + ) PQ I= p - ( PC 1 
bound-to-total ratio for antigen 

EQUATIONS 

R*+R(l+Kp-Kq)-Kq=O 

R = [PQl/[Pl 

K = k/k’ = [PQl,/[Pl,[Ql, 

B/T = R/(1 +R) = [PQl/p 

d[PQl/dt = -k’[ PQ] 

[PQI, = [PQlo exp (- k’t) 

k’ = A exp (-ER/T) 

[PQI, =jiI [PQA ew(-<tt) = 

P+Q+PQ 

p+c+pc 

d[PQl/dr = k,[Pl[Q] - k;[PQ] 
d[PCl/dt = k,[Pl[C] -k;[PC] 
d[Pl/dt = - (d[ PQl/dr + d[ PC]/&) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 



270 D. RODBARD and K. J. CATT 

V’Qlo = p(Rl(1 +R)) 
V’lo=~-[[PQlo=p/(l+R) 
[ PC]o=O 
taJ = c 

-d[Pl/dt = d[PC]/dt 
= k,[PI[Cl --A#JC] 

k Mf7[Cl 
k MPI 

where 

kl = MCI 

‘Free’ = [PI, = [PIP exp (- %O 

‘Bound’= [PQI, = [PQlo+[P]o(l -exp(-$0) 

'BIT'=(B/T), = l- [PCI/P 
'BIT'=(B/T),= VQl,h f P%/P exp (- k30 

P+CAPC 

d[PClldt = M[Plo - V’CIM - WI) 

lO& (([PI, - [PCIMC - [PCIN = h([n3 -a+ 1% t~lolc 

‘Free’ = [PC] = [P10(R2/(l + Rd) 

‘Bound’ = P - [PC] 

lim [PC], = [PI0 t-rm 

lim [PC], t-b- = [m&c/(1 -I- K,c)) 

[pQl,+[PCl,=p(RI(l+R)) 
[~Ql,WCl, = q/c 

[PCl,(l+q/c) =p(RI(l+R)) 

fBIT)m, = 1 - [PCllp 
= 1 -R/(1 +RL 

(1+4/c) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(23 

(23) 

(24) 

(23 
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P+Q I= PQl 
P+Qz = f=Qz 
P+ Q, = PQ, 
P+cePc 

dIPQ,]/dt=k,[P][Q,]-_k;[PQ,] for j- 1,2,3...,n+l 

n+1 

P = VI + ,; [PQ,l 

4 = rQ,l +iPQ,l 

forj= 1,2,3 ,..., n+l 

P+Qe PQ 
Q+SeQS 

PQ+S= PQ.S 

d[PQ . SW = k,[PQl[Sl 

[PQ . Sl = CPQId1 --w (-W) 
where k, = k,[S] = ktS 

‘BIT’= BIT(1 -exp (-k,t)) 
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DISCUSSION 

Vermeulen: Dr. Rodbard, you showed a slide on which the distribution of tes- 
tosterone between different proteins was shown. What association constant were 
you using in this representation, because I saw that you had 10% of free testos- 
terone in plasma, and if you assume that the association constant of testosterone 
and albumin is of the order of 3 x lo4 mol/l, then the concentration of albumin- 
bound testosterone should be between 10 and 20 times that in the free fraction?’ 
In other words, all testosterone should be either free or albumin-bound. 
Rodbard: I regret that I do not have a slide of those affinity constants, but I have 
a copy here for your inspection. These were drawn from the literature; in some 
cases we have had to adjust from 25” or 0” back to 37°C -indeed a very hazardous 
calculation-so that I certainly don’t want these percentages that I’m displaying 
here to be interpreted as absolute [22,231. 
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Kellie: I .notice, Dr. Rodbard, that you talked about these equilibrium conditions 
without reference to temperature. The equilibrium is reached much more rapidly 
at 30°C than it is at 0°C. Is there any disadvantage in working at 3O”C, as distinct 
from O”C, since as far as we can determine, the position of equilibrium doesn’t 
seem to depend so much on temperature? 
Rodbard: The association rate constant k and dissociation rate constant k’, both 
increase as with temperature. However, the affinity constant, or “equilibrium con- 
stant of association”, K = k/k’, may or may not change. For most of the protein- 
protein interactions, the affinity constant is reduced as temperature increases 
from 0” to 37”C, and I believe this is true for most of the steroid-antibody reac- 
tions. Thus, there may be a serious disadvantage to operating RIAs at 37°C. 
One approach is to conduct the steroid-antibody reaction at 37°C for a few hours, 
so that the reaction proceeds very rapidly toward equilibrium, followed by a 
reduction in temperature to 25” or even 4”C, to take advantage of the increased 
affinity constant at the lower temperature. 
Exley: I can’t quite‘ understand what you mean by an aflinity constant of antibodies, 
because antisera contain a whole collection of molecular species, all with differ- 
ent affinity constants. When you determine the affinity constants by Scatchard 
plots, you can obviously see that there is more than one species present; all you 
can calculate, therefore, is an average afhnity constant. 
Rodbard: It’s true that we are almost always dealing with a heterogeneous system 
of binding proteins. The Scatchard plot for a single antigen-antibody reaction, that 
is, the bound to free ratio for the ligand vs. the amount bound, is in theory a 
straight line, the slope of which is equal to -K. In actuality we almost always 
obtain a hyperbola. Now this hyperbola, as you say, is most likely due to the fact 
that one is dealing with several different species of antibodies, or alternatively, as 
Ekins has pointed out, this could also be due to the fact that the labelled and 
unlabelled ligand have different affinity constants. I would also like to point out 
that this non-linearity could also be due to a failure to reach equilibrium, and it 
can also be due to the fact that the second reaction, let us say with charcoal, silica 
or talc, may perturb the first reaction. This slope of the Scatchard plot may be 
more a reflection of the amount and affinity of the steroid for the charcoal rather 
than for the antibody. In this situation, it is the high-affinity antibodies that define 
the shape of the dose-response curve, at least in the low-dose region, Dr. Ekins 
has introduced the concept of the “equivalent equilibrium” constants, or an 
average affinity constant, so that the dose-response curve can be regarded as 
though there were a single aiIinity constant (p. 74 of [9]). Also I’d like to announce 
that my colleague, Feldman, has developed a computer programme that enables 
us to estimate the parameters of these hyperbolas. When we have a non-linear 
Scatchard plot, we can estimate the affinity constants and concentrations of each 
species of antibody which is present. However, in order to obtain reliable and 
precise estimates in these complex systems, one must have a great deal of data 
with very great precision [ 10,241. 


